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Abstract

It has been shown that the fundamental assumptions associated with conventional one-

factor measurement models are frequently violated in analyses of scores from a test composed

of testlets. Eight different measurement models were conceptualizedfor this kind of situation,

and the goodness of fit of each model was examined. Measurement models incorporating

correlated errors appear to be more appropriate than conventional measurement models with

uncorrelated error specifications when testlets are involved. Also, the congenric assumption

about part tests or items appears to be more plausible than the essentially tau-equivalent

assumption for a test composed of testlets. The one-factor congeneric model with correlated

error specifications would be the best measurement model for a test composed of testlets if

dichotomously-scored items are used as unit of analysis. However, a congeneric model using

passage (testlet) scores can be considered as an alternative for a test composed of testlet when

passage (testlet) scores are used as the unit of analysis.
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Measurement Models for a Test let-Based Test

Test lets are small tests, small enough to manipulate but large enough to carry their

own context (Wainer & Lewis, 1990; Wainer & Kiely, 1987). Previous studies have indicated

that the reliability of testlet-based test scores is likely to be overestimated by conventional

item-based reliability estimation methods (Sireci, Thissen & Wainer, 1991; Wainer &

Thissen, 1996; Lee & Frisbie, in press). Wainer and Thissen (1996) and Sireci, Thissen and

Wainer (1991) studied this topic using Bock's nominal model (Bock, 1972), a branch of item

response theory, and concluded that the overestimation is due to "local dependence". Lee and

Frisbie (in press), using a generalizability theory approach, provided reasons for the

overestimation when coefficient alpha is used and contemplated the factors influencing the

magnitude of the overestimation. However, none of this work resolves the question of which

method or measurement model is most appropriate for estimating the reliability of test scores

composed of testlets. The purposes of this study were to conceptualize the various kinds of

measurement models for a test composed. of testlets and to investigate the goodness of fit of

those models to data. Because different measurement models have different assumptions,

research on these models would provide empirical evidence about which assumptions are

most essential to the application of the model.

In this paper, distinctions among eight measurement models are described in terms of

the kind of parallelism exhibited by part tests or individual items: classically parallel,

essentially tau-equivalent, and congeneric parts or items. The differences among these three

classifications are due to differences in the distributions of observed scores, true scores, and

error scores (Feldt & Brennan, 1989; Qualls, 1995). (In this paper, the classically parallel

conceptualization will not be considered because it would be difficult to demonstrate, in a

practical sense, that part tests or items of any test are truly parallel according to the classical

model.)



The structural equation modeling (SEM) concept is another approach to defining

measurement models. For each measurement model, a structural equation model connecting

latent variables to one or more measures or observed variables is specified. That is, observed

variables can be expressed as linear combinations of latent'variables. The SEM measurement

model represents the regression X on and the elements of matrix Ax are the partial

regression coefficients in the structural equations (Bo llen, 1989; Joreskog & Sorbom, 1993) :

X =AA +8
where X : observed variables

Ax : structural coefficients linking the latent and observed variables

4 : latent variables
8 : error variables

With a set of structural equations, the covariance matrix of the observed variable vector X

could be defined as Equation 2 ( Bollen, 1989; Joreskog & Sorbom, 1993a; Schumacker &

Lomax, 1996):

2

(1)

Ex = AAA; +Os (2)

where Ex : covariance matrix of observed variables

Ax : structural coefficients linking the latent and observed variables

(I) : covariance matrix of latent variables
08 : covariance matrix of error variables

On the basis of the distinct conceptions about parallelism in part tests or items and with

the SEM approach, the following eight measurement models were conceptualized for a test

composed of testlets.

Model 1 : One-Factor Essentially Tau-Equivalent Model
In this model, all parameters in the Ax matrix are restricted to be equal,

as the true score variances of items are assumed to be equal, and the 08
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matrix is restricted to be diagonal, which means the errors are not
correlated, but the diagonal elements may differ, as the error variances
of the items may differ.

Model 2 : One-Factor Congeneric Model
The elements of Ax may be different, which indicates a heterogeneity of
true score variances among items, and 08 is restricted to the diagonal

matrix like Model 1.

Model 3 : One-Factor Essentially Tau-Equivalent Model with Correlated Errors
The parameters in Ax are restricted to be equal. In the 98 matrix, the
off-diagonal elements for within-passage items are allowed to have non-
zero values, and the other off-diagonal elements, those for between-
passage items, are restricted to have zero values.

Model 4 : One-Factor Congeneric Model with Correlated Errors
The matrix Ax is not restricted, and different parameters may be
estimated. This model has the same specifications about the 98 matrix as

Model 3.

Model 5 : Multi-Factor Partially Tau-Equivalent Model
In this model, testlet-specific common factors among items are
considered. The within-passage items are assumed to be essentially tau-
equivalent. However, the between-passage items may not be essentially
tau-equivalent. Therefore, in order to describe this model, the label of
"partially tau-equivalent model" is used. (Conceptually, the reliability
estimates using this model should be the analog to stratified coefficient
alpha.)

Model 6 : Multi-Factor Congeneric Model
This model also assumes testlet-specific common factors. However, the
Ax matrix is not restricted for each testlet, and different parameters in

each testlet may be estimated.

Model 7 : One-Factor Essentially Tau-Equivalent Model using Test let Scores
This model has the same structure as Model 1 except that testlet
(passage) scores are used instead of item scores.

Model 8 : One-Factor Congeneric Model using Test let Scores
This model has the same structure as Model 2 but uses testlet (passage)
scores rather than item scores.

The main purposes of this study were to conceptualize measurement models for a test

composed of testlets and to assess the goodness of fit of those models to data. Three primary

objectives of this study were to:

6
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1. Examine the dimensionality and local dependence of tests composed of testlets to

investigate the appropriateness of conventional unidimensional measurement models, based

on dichotomously scored items, for describing test scores based on testlets.

2. Determine how well data from a test composed of testlets fit each of several

measurement models.

3. Investigate the relationship between the degree of violation of the assumptions

required by measurement modeling and the goodness of fit of measurement models to data.

Method

Data Source

The data for this study were taken from the 1995 Iowa Tests of Basic Skills (ITBS) Form

M to Form K equating study. Grade 8 students were used. The tests to be used are the Reading

Comprehension (Reading), Maps and Diagrams (Maps), and Math Problem Solving and Data

Interpretation (Math) tests of the ITBS (Hoover, Hieronymous, Frisbie & Dunbar, 1994). These

are testlet-based tests because each is composed of groups of items associated with its own

stimulus material. The sample size and the general characteristics of each test are presented

in Table 1.

Insert Table 1 About Here

A simulated data set was created to have the same structure as the grade 8 ITBS Vocabulary

test. The simulated response data were generated by following the procedures used by Yen

(1984), assuming item parameter estimates of the grade 8 Vocabulary test from 1992 the ITBS

national standardization sample as the true item parameters. Though the simulated data set

did not have naturally-formed testlets, seven testlets were randomly constructed for the

purpose of comparison with tests composed of testlets.
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Analyses

The local independence assumption was checked by Yen's (1984) Q3 statistics. To

examine the nature of conditional dependence measures, distributional characteristics of the

pair of conditional dependence measures (one for within-passages and one for between-

passages) were compared. The computer application program IRT_LD (Chen & Thissen, 1997)

was used to compute Yen's Q3 statistic. Two principal component analyses were completed to

investigate issues related to the number of factors underlying a test. One set of analyses used

a tetrachoric correlation matrix among individual items, and the other set used a product-

moment correlation matrix among testlet scores. Sets of eigenvalues from each principal

component analysis were compared.

For specified SEM.measurement models for a test composed of testlets, the computer

application program LISREL8 (Joreskog & Sorbom, 1993a) was used to estimate model

parameters and to compute the goodness of fit statistics. Various goodness of fit statistics for

each model were compared among the eight measurement models to identify the most

appropriate measurement models for conceptualizing a test composed of testlets.

Results

Local Independence

The distributional statistics for within-passage and between-passage Q3 local item

dependence measures are shown in Table 2. Even though the Q3 statistic is a correlation

between residuals of an item pair based on item response models (therefore, zero correlation

might be expected for a locally independent item pair), Q3 has a tendency to be slightly

negative in the null case (Yen, 1984; Yen, 1993; Chen & Thissen, 1997). Yen (1993)

demonstrated that the expected value of the Q3 statistic, when local independence holds, is

approximately -1/(n-1), where 71, is the number of test items. The expected values for the Q3
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statistics, which are also presented in Table 2, can be used as a criterion for comparing the

overall level of local dependence of within- and between-passage item pairs.

Insert Table 2 About Here

The averages of between-passage Q3 statistics for the Reading, Maps, and Math tests

have values similar to the expected values of Q3 statistics, implying that item pairs between

passages are locally independent. In contrast, the averages of within-passage Q3 statistics for

these tests have more positive values compared to the expected values of Q3, even though the

magnitudes of the differences in the Reading and Maps tests are greater than in the Math test.

This finding suggests that the local item independence assumption is violated. For the

simulated data set, because testlets were randomly constructed, averages of within- and

between-passage Q3 statistics are both similar to the expected value of Q3.

Unidimensionality

Table 3 provides the first ten eigenvalues from tetrachoric correlation matrices based on

individual items. These indicate that more than one factor would be required for explaining

the data of the Reading and Maps tests. For the Math test and the simulated data set, one

factor appears to be appropriate to explain the data.

Insert Table 3 About Here

To check the possibility of using passage (testlet) scoresinstead of using item scores,

principal component analyses with product moment correlation matrices among testlet scores

were conducted. Eigenvalues are presented in Table 4.

Insert Table 4 About Here

One dominant factor is evident, and the other eigenvalues are considered negligible. The well-

known Kaiser (1970) criterion, retaining eigenvalues greater than unity, has been criticized

9
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because of its susceptibility to the overidentification of dimensions (Cliff, 1988). Based on the

Kaiser criterion, only one dimension is retained for all tests when testlet scores are used. In

view of this susceptibility to overidentification, unidimensionality can be supported for the

tests used in this study when testlet scores are used as the unit of analysis

Goodness of Fit Analysis

Schumacker and Lomax (1996) distinguished three types of goodness of fit statistics:

model fit, model comparison, and model parsimony. Because the main focus of this study was

on investigating the relative appropriateness of each measurement model to data, several

goodness of fit statistics in the category of model fit were considered: x 2 measure, root-mean-

square residuals (RMR), and goodness of fit index (GFI). The x 2 measure can be considered

(N-1) times the minimum value of the fit function for the specified model, where N represents

the number of examinees. Consequently, the x 2 measure is sensitive to sample size, though it

could be used as a statistical test. But, the analysis of the x2 measure in this study does not

depend upon a statistical test; it depends instead upon a comparison of the magnitudes of the

values obtained from various specified measurement models. RMR represents the square root

of the mean squared differences between observed and model-based covariance matrixes. The

smaller values of RMR represent better fit of the model to the data. GFI is based on a ratio of

the sum of the squared difference between the observed and reproduced matrices to the

observed variance. GFI values close to 1.0 reflect a good fit. The relative comparison of

goodness of fit statistics among measurement models would be more meaningful than the

absolute comparison between goodness of fit statistic and its criterion. These three kinds of fit

statistics for each measurement model used in this study are presented in Table 5.

Insert Table 5 About Here
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The essentially tau-equivalent model (Model 1) seems to present the worst fit compared

to other measurement models, which are based on the same data set (Models 2 to 6) for the

Reading, Maps, and Math tests. Among these measurement models based on dichotomous-

scored items (Models 2 to 6), the one-factor congeneric model with correlated errors (Model 4)

and the multi-factor congeneric model (Model 6) provide a relatively better fit to the data than

do the other models for the Reading, Maps, and Math tests. For the simulated data set, three

models within the essentially tau-equivalent family (Models 1, 3, and 5) seem similar, and

three models within the congeneric family (Models 2, 4, and 6) provide goodness of fit statistics

that are similar to one another.

Comparing the results from different content areas, the differences of fit statistics among

measurement models within the same measurement family (either essentially tau-equivalent

or congeneric) are greater than in the Reading and Maps tests than in the Math test. This

finding can be explained in terms of the violation of the assumption for measurement

modeling. That is, previously indicated, the assumptions for measurement modeling based on

dichotomously-scored items are less violated in the Math test. So the less different fit statistics

among measurement models within the same family in the Math test might not be so

surprising. This relationship could be observed more evidently in the simulated data set. The

simulated data set was included in this study for the purpose of comparison with tests

composed of testlets. Consequently, it would be reasonable to expect little difference in fit

statistics from different measurement models within the same family. The comparison of

results from different contest areas having different degrees of violation of assumptions can be

used as one piece of evidence to support the relationship between the.degree of violation of

assumptions and its effect on model-data fit.

Because Models 7 and 8 are based on passage (testlet) scores, it would not be reasonable

to compare these models with other models (Models 1 to 6) based on dichotomously-scored

items. Nonetheless, the appropriateness of these two models could be assessed by examining
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fit indexes that are less sensitive to the scoring metric, such as RMR and GFI. Models 7 and 8

seem to be at least as appropriate as the other models in analyzing data from tests composed of

testlets, when passage (testlet) scores instead of item scores are used as the unit of analysis.

The congeneric model using testlet scores (Model 8) represents a better fit than the essentially

tau-equivalent model using testlet scores (Model 7) except for the Maps test. It seems

reasonable to expect that, if passage (testlet) scores instead of item scores were used, the true

score variances for passage (testlet) scores be different one another in a test because numbers

of items within passages are different from passage to passage.

The remaining part is devoted to investigate the specific issues related to tests composed

of testlets: uncorrelated vs. correlated error, one-factor vs. multi-factor, and essentially tau-

equivalent vs. congeneric issues. These issues can be addressed by using the difference of the

2 measures from two different measurement models. These differencesof the x 2 measures

and their statistical test results are presented.in Table 6.

Insert Table 6 About Here

For the Reading, Maps, and Math tests, the difference of the x2 measures between one-

factor essentially tau-equivalent model (Model 1) and one-factor essentially tau-equivalent

model with correlated errors (Model 3), and difference between one-factor congeneric model

(Model 2) and one-factor congeneric model with correlated errors (Model 4) are very large

compared to their degrees of freedom. This means that the uncorrelated error assumption

required by classical test theory or the local independence assumption required by item

response theory is not satisfied in tests composed of testlets. Because item responses for the

simulated data set were generated under the local independence assumption and the testlets

in this data set were constructed randomly, the uncorrelated error assumption (or local

independence assumption) seems to be satisfied in this case. Similar results, shown in Table 6,
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were obtained by comparing the one-factor essentially tau-equivalent model (Model 1) with the

multi-factor partially tau-equivalent model (Model 5) and the one-factor congeneric model

(Model 2) with the multi-factor congeneric model (Model 6).

For the case of essentially tau-equivalent vs. congeneric models, congeneric models

provide a better fit to data than do essentially tau-equivalent models for every test used in this

study. However, this is more evident in comparing models based on dichotomously-scored

items than models based on testlet scores.

Discussion

When items in a test are related to the same single passage or other stimulus material,

there might be statistical dependence among those items. Items within a certain testlet share

something in common even after eliminating the influence of the general common factor from

every item. Consequently, a fundamental assumption required by measurement modeling (the

uncorrelated error assumption for classical test theory or the local independence assumption

for item response theory) is frequently violated in a test composed of testlets.

Measurement models incorporating correlated errors or multi-factors appear to be more

appropriate than conventional one-factor measurement models with uncorrelated error

specifications when testlets are involved. Also, the congenric assumption about part tests or

items appears to be more plausible than the essentially tau-equivalent assumption for a test

composed of testlets, at least when dichotomously-scored items are used as the unit of analysis.

One important consideration should be addressed at this point: the relative

appropriateness of the multi-factor vs. correlated error models. This question cannot be

answered by a statistical approach, but rather it should be investigated by a conceptual

analysis of the test structure. For example, if the testlet factor is conceptualized as fixed, it

would reasonable to treat testlets with multi-factor measurement models. In contrast, if the

13
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testlet factor is considered random, one-factor measurement models with a correlated error

specification would be better.

Whether a factor is random or fixed in a particular situation depends on the sampling

plan used to form the test. For the situation in this study, the sampling plan usually assumed

a universe of passages, from which several passages were randomly sampled. Items in a

passage were also assumed to be sampled randomly for that passage. Then, the passages are

considered random in this sampling plan (Lee & Frisbie, in press). Conceptually, one-factor

measurement models with correlated errors would be more appropriate for this case than

multi-factor measurement models might be.

The statistical appearances of tests composed of various testlets (random or fixed) would

be similar if the individual items were taken as the fundamental measurement unit (e.g. there

would be a systematic pattern in the covariance matrix among individual items). For this

reason, applying measurement models based on a structural equation modeling approach

could not make clear distinctions between measurement models with correlated errorsand

multi-factor measurement models. However, because different ways of treating testlets

(random or fixed) could lead to a dramatic difference in measurement applications, the

sampling plan for a test should be considered before applying a specific measurement model.

In conclusion, when items are used as the unit of analysis, the assumptions required by

measurement modeling for tests composed of testlets are violated to some degree, but those

assumptions are satisfied when using passage (testlet) scores as the unit of analysis. The one-

factor essentially tau-equivalent model (the same for Cronbach's alpha) presents the worst

model-data fit for a test composed of testlets. The one-factor congeneric model with correlated

error specifications would be the best measurement model among the six models based on

dichotomously-scored items that were conceptualized in this study. A congeneric model using

passage (testlet) scores can be considered as an alternative for a test composed of testlet, as

long as passage (testlet) scores are used as the unit of analysis. An increase in the extent of

14
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violation of the assumptions required by measurement modeling leads to a corresponding

increase in difference of fit statistics between uncorrelated and correlated measurement

models, and between one-factor and multi-factor measurement models.

15
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TABLE 1
Descriptive Statistics for Data Sources Used in This Study

Characteristic Reading Maps . Math Simulation
Sample Size 663 632 537 1000

No. of Items 49 33 36 43

No. of Passages 8 5 8 7

No. of Items
per Passage

9,4,7,5,5,6,3,10 7,7,6,6,7 8,4,4,4,4,4,4,4 7,6,6,6,6,6,6

R 24.9 16.3 16.5 26.4

s 9.99 6.34 6.38 8.47

Skewness 0.375 0.383 0.363 -0.196

Kurtosis 2:216 2.306 2.413 2.280
Note. Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving
and Data Interpretation, Simulation = Simulated data.



TABLE 2
Distribution of Yen's Q3 Statistics for Within-Passage and Between-Passage Item Pairs

Test No. of Q3 E (Q3) Mean Dift. S.D. Range

Reading 1176 -.021

Between 1030 -.021 .000 .043 -.180.121
Within 146 .038 .059 .058 -.131.196

Maps 528 -.031

Between 435 -.029 .002 .045 -.177.098
Within 93 .031 .062 .049 -.064.164

Math 630 -.029
Between 560 -.022 .007 .049 -.183--.137
Within 70 .008 .037 .057 -.087.166

Simulation 903 -.024
Between 792 -.019 .005 .034 -.151.107
Within 222 -.016 .008 .031 -.088.052

Note. Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math
Problem Solving and Data Interpretation, Simulation = Simulated data; E (Q3) = Expected

value of Q3, Diff. = Absolute value of the difference between E (Q3) and the sample mean.



TABLE 3
First Ten Eigenvalues of the Tetrachoric Correlation Matrices Based on Individual Item Scores

Eig
Rank

Reading Maps Math Simulation
Eig Dill Eig Ditt Eig Ditt big Dill

1 14.07 11.15 7.84 6.00 8.41 6.42 12.8 / 11.45

2 2.92 1.23 1.84 0.34 1.99 0.19 1.42 0.09
3 1.68 0.17 1.50 0.07 1.80 0.34 1.32 0.06
4 1.51 0.19 1.43 0.11 1.46 0.11 1.27 0.06
5 1.32 0.01 1.32 0.08 1.35 0.07 1.20 0.06
6 1.31 0.06 1.24 0.05 1.28 0.05 1.14 0.05
7 1.25 0.05 1.19 0.04 1.23 0.04 1.09 0.03

8 1.20 0.02 1.15 0.09 1.19 0.05 1.06 0.00
9 1.18 0.03 1.06 0.01 1.14 0.07 1.06 0.02

10 1.15 0.03 1.05 0.05 1.07 0.02 1.03 0.01
Note. Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem
Solving and Data Interpretation, Simulation = Simulated data, Eig = eigenvalue, and Diff =
difference between consecutive eigenvalues.



TABLE 4
Eigenvalues of the Product-Moment Correlation Matrices Based on Passage Scores

Eig
Rank

Reading Maps Math Simulation
big Ditt big Ditt big Ditt Eig Dill

1 4.10 3.30 2.59 1.91 3.34 2.51 4.26 3.68
2 0.80 0.17 0.68 0.06 0.83 0.01 0.58 0.09
3 0.63 0.03 0.62 0.05 0.82 0.10 0.49 0.03
4 0.60 0.07 0.57 0.03 0.72 0.05 0.46 0.01
5 0.53 0.07 0.54 0.67 0.06 0.45 0.04
6 0.46 0.01 0.61 0.04 0.41 0.06
7 0.45 0.04 0.57 0.12 0.35
8 0.41 0.45

Note. Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem
Solving and Data Interpretation, Simulation = Simulated data, Eig = eigenvalue, and Diff =
difference between consecutive eigenvalues.

21



TABLE 5
Goodness of Fit Statistics of Specified Measurement Models

GoF Modell Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
Reading Comprehension l est

2 2328.0 2089.3 1494.5 1282.1 1734.3 1518.1 96.9 70.8
X df=1175 df=1127 df=1029 df=981 df=1140 df=1099 df=27 df=20

RMR 0.067 0.046 0.058 0.036 0.057 0.038 0.065 0.032

GFI 0.85 0.86 0.91 0.93 0.90 0.91 0.96 0.97
Maps and Diagrams I est

2 992.5 817.5 613.4 473.9 /59.9 610.1 9.7 8.1

X df=527 df=495 df=435 df=403 df=513 df=485 df=9 df=5

RMR 0.064 0.042 0.053 0.031 0.057 0.036 0.025 0.018

GFI 0.91 0.92 0.95 0.96 0.93 095 0.99 0.99
Math Problem Solving and Data Interpretation fest

2 1125.7 811.2 932.5 641.5 1004.0 7045 70.5 36.1
X df629 df=594 df=559 df=524 df=594 df=566 df=27 df=20

RMR 0.078 0.042 0.073 0.038 0.073 0.040 0.071 0.028

GFI 0.88 0.92 0.91 0.94 0.90 0.93 0.97 0.98
Simulated Data

2 1499.8 1113.2 1369.3 983.9 1428.7 1095.1 47.5 25.1
X df=902 df=860 df=792 df=750 df=875 df--839 df=20 df=14

RMR 0.061 0.029 0.060 0.027 0.058 0.029 0.047 0.013

GFI 0.93 0.95 0.94 0.96 0.93 0.95 0.99 0.99

Note. GoF = Goodness of fit statistic, x2 = Chi-square measure, RMR = Root-mean-square residual,

GFI = Goodness-of-fit index.
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TABLE 6

Difference of X 2 Statistics from Two Compared Measurement Models and Statistical Tests

Test Compared Models dt difference
X 2 difference

Probability

Uncorrelated vs. Correlated Error Models
Reading I vs 3 833.5 146 .00000

2 vs. 4 807.2 146 .00000
Maps 1 vs. 3 379.1 92 .00000

2 vs. 4 343.6 92 .00000
Math 1 vs. 3 193.2 70 .00000

2 vs. 4 169.7 70 .00000
Simulation 1 vs. 3 130.5 110 .08870

2 vs. 4 129.3 110 .10091
One-Factor vs. Multi-Factor Models

Reading 1 vs. 5 593.7 35 .00000
2 vs. 6 571.2 28 .00000

Maps 1 vs. 5 232.6 14 .00000
2 vs. 6 207.4 10 .00000

Math 1 vs. 5 121.7 35 .00000
2 vs. 6 106.7 28 .00000

Simulation 1 vs. 5 71.1 27 .00008
2 vs. 6 18.1 21 .64267
Essentially Tau-Equivalent vs. Congeneric Models

Reading 1 vs. 2 238.7 48 .00000
3 vs. 4 209.4 48 .00000
5 vs. 6 216.2 41 .00000
7 vs. 8 26.1 7 .00048

Maps 1 vs. 2 175.0 32 .00000
3 vs. 4 139.5 32 .00000
5 vs. 6 149.8 28 .00000
7 vs. 8 1.6 4 .80879

Math 1 vs. 2 314.5 35 .00000
3 vs. 4 291.0 35 .00000
5 vs. 6 299.5 28 .00000
7 vs. 8 34.5 7 .00001

Simulation 1 vs. 2 386.6 42 .00000
3 vs. 4 385.4 42 .00000
5 vs. 6 333.6 36 .00000
7 vs. 8 22.4 6 .00102

Note. Reading = Reading Comprehension, Maps = Maps and Diagrams, Math = Math Problem Solving

and Data Interpretation, Simulation = Simulated data, x 2 difference = difference of x 2 measures from
two compared measurement models, df difference = difference of degrees of freedom from two
compared measurement models.
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